
b. (3 pt) Find y(t) (the output of the LPF).

8. (12 pt) The signal $x(t) = \cos(2\pi(t^2 + at + 3))$ is plotted below. The time unit is in seconds.

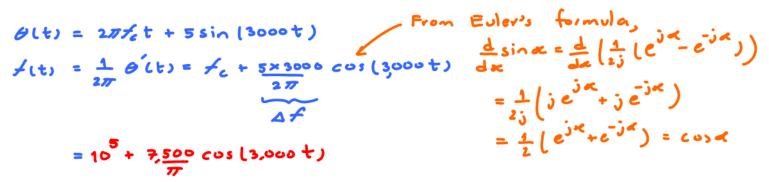
Page **7** of **12**

a. (2 pt) Find the instantaneous frequency (in Hz) at t = 2. Hint: it is an integer.

1 cycle takes 0.2 sec. So, $f = \frac{1}{0.2} = 5 \text{ HZ}$

b. (5 pt) Find the value of *a*. Hint: it is an integer.

$$f(t) = \frac{d}{dt} (t^2 + \alpha t + 3) = 2t + \alpha$$
.
 dt
 $f(2) = 2 \times 2 + \alpha = 5$ $\alpha = 1$


c. (5 pt) Find the instantaneous frequency (in Hz) at t = 5. Hint: it is an integer.

$$F(t) = 2t + \alpha = 2t + 1$$

= 2×5+1
= 11 HZ

9. (10 pt) A modulated signal with carrier frequency $f_c = 10^5$ Hz is described by the equation

$$x(t) = 10\cos(2\pi f_c t + 5\sin(3000t)).$$

a. (5 pt) Find the instantaneous frequency f(t) of x(t).

b. (5 pt) Estimate the bandwidth of x(t) via Carson's rule.

10. (8 pt) A modulated signal with carrier frequency $f_c = 10^5$ Hz is described by the equation

 $x(t) = 10\cos(2\pi f_c t + 5\sin(3000t) + 10\sin(2000\pi t)).$

a. (5 pt) Find the instantaneous frequency f(t) of x(t).

$$f(t) = \frac{1}{2\pi} G'(t)$$

= $f_c + \frac{5 \times 3000}{2\pi} \cos(3,000t) + \frac{10 \times 2000}{2\pi} \sin(2000\pi t)$
= $10^5 + \frac{3}{500} \cos(3,000t) + \frac{10000}{2\pi} \sin(2000\pi t)$

b. (3 pt) Estimate the bandwidth of x(t) via Carson's rule.

11. (16 pt) Determine the Nyquist sampling rate and for the signals in the table below. No explanation is needed.

	Nyquist sampling rate	Nyquist sampling interval
$\operatorname{sinc}(200\pi t)$		
$\operatorname{sinc}^2(200\pi t)$		
$\operatorname{sinc}(200\pi t) + 5\operatorname{sinc}^2(120\pi t)$		
$\operatorname{sinc}(100\pi t)\operatorname{sinc}(200\pi t)$		